Heatmap of contributions of a select subset of biomarkers to the variable importance measure changes as assessed by influence curve-based estimation, across all subjects. The heatmap produced performs supervised clustering, as per Pollard & van der Laan (2008) <doi:10.2202/1544-6115.1404>.
heatmap_ic(x, ..., design, FDRcutoff = 0.25, type = c("top", "all"), top = 25)
x | Object of class |
---|---|
... | additional arguments passed to |
design | A vector giving the contrast to be displayed in the heatmap. |
FDRcutoff | Cutoff to be used in controlling the False Discovery Rate. |
type | A |
top | Number of identified biomarkers to plot in the heatmap. |
heatmap (from superheat) using hierarchical clustering to plot the changes in the variable importance measure for all subjects across a specified top number of biomarkers.
if (FALSE) { library(dplyr) library(biotmleData) library(SummarizedExperiment) data(illuminaData) colData(illuminaData) <- colData(illuminaData) %>% data.frame() %>% mutate(age = as.numeric(age > median(age))) %>% DataFrame() benz_idx <- which(names(colData(illuminaData)) %in% "benzene") biomarkerTMLEout <- biomarkertmle( se = illuminaData, varInt = benz_idx, bppar_type = BiocParallel::SerialParam(), g_lib = c("SL.mean", "SL.glm"), Q_lib = c("SL.mean", "SL.glm") ) limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout) heatmap_ic(x = limmaTMLEout, design = design, FDRcutoff = 0.05, top = 10) }